Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 848
Dado un número natural $n$ mayor que $1$, hallar todos los pares de números enteros $a$ y $b$ para los que las dos ecuaciones $x^n+ax−2008=0$ y $x^n+bx− 2009=0$ tienen, al menos, una raíz común real.
pistasolución 1info
Pista. Demuestra que la única posible raíz común es $\frac{1}{b-a}$.
Solución. Supongamos que $\alpha$ es una raíz común a ambos polinomios. Restando las igualdades $\alpha^n+a\alpha=2008$ y $\alpha^n+b\alpha=2009$, obtenemos que $(b-a)\alpha=1$, luego solo hay una posible raíz común, que es $\alpha=\frac{1}{b-a}$. Sustituyéndola en la primera ecuación, tenemos que \[\frac{1}{(b-a)^n}+\frac{a}{b-a}=2008\ \Leftrightarrow\ \frac{1}{(b-a)^{n-1}}=2008(b-a)-a=2008b-2009a.\] De aquí deducimos que \[(b-a)^{n-1}(2008b-2009a)=1.\] Al tratarse de números enteros obtenemos que $b-a=\pm 1$ y $2008b-2009a=\pm 1$, aunque habrá que tener en cuenta la paridad del exponente $n-1$. Distingamos casos:
  • Si $b-a=1$ y $2008b-2009a=1$, podemos resolver este sistema lineal para llegar a que $a=2007$ y $b=2008$, en cuyo caso se comprueba fácilmente que $x_0=1$ es raíz común a los dos polinomios del enunciado.
  • Si $b-a=-1$ y $2008b-2009a=1$ (siendo $n$ impar), el sistema lineal nos da $a=-2009$ y $b=-2010$, en cuyo caso la raíz común es $x_0=-1$ (se comprueba fácilmente).
  • Si $b-a=-1$ y $2008b-2009a=-1$ (siendo $n$ par), el sistema lineal nos da $a=-2007$ y $b=-2008$, en cuyo caso la raíz común es $x_0=-1$ (se comprueba también fácilmente).
Por tanto, respondemos al enunciado diciendo que las soluciones $(a,b)$ para $n$ par son $(2007,2008)$ y $(-2007,-2008)$; si $n$ es impar, las soluciones son $(2007,2008)$ y $(-2009,-2010)$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre