Sean $C_1$ y $C_2$ dos circunferencias exteriores tangentes en el punto $P$. Por un punto $A$ de $C_2$ trazamos dos rectas tangentes a $C_1$ en los puntos $M$ y $M'$. Sean $N$ y $N'$ los puntos respectivos de corte, distintos ambos de $A$, de estas rectas con $C_2$. Probar que $PN'\cdot MN=PN\cdot M'N'$.