Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 875
Sea $ABCD$ un cuadrilátero convexo y sea $P$ la intersección de sus diagonales $AC$ y $BD$ y supongamos que cumple $\angle APD=60^\circ$. Sean $E,F,G,H$ los puntos medios de los lados $AB,BC,CD,DA$, respectivamente. Hallar el mayor número real positivo $k$ tal que \[EG+3HF\geq kd+(1-k)s,\] siendo $s$ el semiperímetro de $ABCD$ y $d$ la suma de las longitudes de las diagonales.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre