Sea $ABCD$ un cuadrilátero cíclico cuyas diagonales $AC$ y $BD$ son perpendiculares. Sean $O$ el circuncentro de $ABCD$, $K$ la intersección de sus diagonales, $L\neq O$ la intersección de las circunferencias circunscritas a $OAC$ y $OBD$, y $G$ la intersección de las diagonales del cuadrilátero cuyos vértices son los puntos medios de $ABCD$. Probar que $O$, $K$, $L$ y $G$ están alineados.