Dos esferas de radio $r$ son tangentes exteriores. Otras tres esferas de radio $R$ son tangentes exteriores entre sí dos a dos. Cada una de estas tres esferas es además tangente exterior a las dos primeras. Encuentra la relación entre $R$ y $r$.
pistasolución 1info
Pista. Encuentra un triángulo rectángulo con vértices en los centros y los puntos de tangencia.
Solución. Sea $O$ el centro de una de las esferas de radio $r$, $C$ el centro de una de las esferas de radio $R$ y $T$ el punto de tangencia de las dos esferas de radio $r$. Por la simetría de la figura, es evidente que $OCT$ es un triángulo rectángulo con ángulo recto en $T$. Como $T$ es un punto de la esfera de centro $O$, tenemos que $OT=r$; por la tangencia de las esferas de centros $O$ y $C$, tenemos que $OC=R+r$; finalmente, como los centros de las esferas de radio $R$ forman un triángulo equilátero de centro $T$ y lado $2R$, se tiene que $CT$ es $\frac{2}{3}$ de la altura de dicho triángulo, es decir $CT=\frac{2}{3}\cdot\frac{\sqrt{3}}{2}\cdot 2R=\frac{2\sqrt{3}}{3}R$. El teorema de Pitágoras nos dice entonces que
\[OC^2=OT^2+CT^2\ \Longleftrightarrow\ (R+r)^2=r^2+\tfrac{4}{3}R^2\ \Longleftrightarrow\ 2Rr=\tfrac{1}{3}R^2\ \Longleftrightarrow\ R=6r.\]
Esta es la relación buscada (observemos que se ha descartado la solución $R=0$ ya que no es posible en este problema).