Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 907
Dado un entero positivo $n$, hallar la suma de todos los enteros positivos menores que $10n$ que no son múltiplos de $2$ ni de $5$.
pistasolución 1info
Pista. Fíjate que los números que son múltiplos de $2$ son los que terminan en un dígito par y los múltiplos de $5$ los que terminan en dígito $0$ o $5$. Entonces, estás buscando la suma de los que terminan en $1$, $3$, $7$ o $9$.
Solución. Los enteros positivos que no son múltiplos de $2$ ni de $5$ son aquellos cuyo dígito de las unidades es $1,3,7,9$. Hay exactamente $n$ números menores que $10n$ con dígito de las unidades un $j$ dado, a saber: \[j,10+j,20+j,\ldots 10(n-1)+j.\] La suma de estos $n$ números es \[10(1+2+\ldots+(n-1))+nj=5n(n-1)+nj=5n^2+(j-5)n.\] Por tanto, la suma que estamos buscando es \[5n^2+(1-5)n+5n^2+(3-5)n+5n^2+(7-5)n+5n^2+(9-5)n=20n^2.\]
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre