Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 916
Hallar todas las funciones reales continuas $f:\mathbb{R}^+\to\mathbb{R}^+$ que cumplen, para todo real positivo $x\in\mathbb{R}^+$, la condición \[x+\frac{1}{x}=f(x)+\frac{1}{f(x)}\]
pistasolución 1info
Pista. Despeja $f(x)$ en la ecuación dada.
Solución. Llamando $y=f(x)$, tenemos la ecuación $x+\frac{1}{x}=y+\frac{1}{y}$ en la incógnita $y$, que no es más que la ecuación de segundo grado $y^2-(x+\frac{1}{x})y+1=0$ (podemos multiplicar por $y$ puesto que $y\neq 0$). Sus soluciones son \[f(x)=y=\frac{-(x+\frac{1}{x})\pm\sqrt{(x+\frac{1}{x})^2-4}}{2}=\frac{-(x+\frac{1}{x})\pm(x-\frac{1}{x})}{2},\] lo que nos dice que $f(x)=x$ o bien $f(x)=\frac{1}{x}$ para cada $x\in\mathbb{R}^+$. Ahora bien, podría elegirse $f(x)=x$ para algunos valores de $x$ y $f(x)=\frac{1}{x}$ para otros, pero nos piden que la función $f$ sea continua. Las gráficas $y=x$ e $y=\frac{1}{x}$ se cortan únicamente en $x=1$, luego la continuidad nos dice tenemos que elegir una de las dos para todos los $x\in(0,1]$ y una de las dos para todos los $x\in[1,+\infty)$. Tenemos así cuatro soluciones: \begin{align*} f(x)&=x \text{ para todo }x>0,&f(x)&=\frac{1}{x}\text{ para todo }x>0,\\ f(x)&=\begin{cases}x&\text{si }0\lt x\leq 1,\\\frac{1}{x}&\text{si }x\gt 1,\end{cases}& f(x)&=\begin{cases}\frac{1}{x}&\text{si }0\lt x\leq 1,\\x&\text{si }x\gt 1.\end{cases} \end{align*}
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre