Solución. Observemos que $x^2+x=x(x+1)$ y que $x$ y $x+1$ no tienen factores comunes. Por tanto, cualquier factor primo de $y$ es factor de $x$ o de $x+1$, pero no de ambos. De esta forma, tanto $x$ como $x+1$ tienen que ser potencias $k$-ésimas de números enteros. Las únicas potencias $k$-ésimas positivas que difieren en una unidad son $0$ y $1$, a las que también hay que añadir $-1$ y $0$ si $k$ es impar. Deducimos que $x=0$ o $x=-1$, lo que nos da como únicas soluciones $(x,y)=(0,0)$ y $(x,y)=(-1,0)$, que son válidas para cualquier entero $k\gt 1$, como puede comprobarse fácilmente.