Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 931
Busca un polinomio de grado tres cuyas raíces sean los cuadrados de las raíces del polinomio \[p(x)=x^3+2x^2+3x+4.\]
pistasolución 1info
Pista. Expresa las relaciones de Cardano-Vieta para el polinomio $p(x)$ y para el polinomio cuyas raíces son los cuadrados de las de $p(x)$.
Solución. Si llamamos $\alpha,\beta,\gamma$ a las tres raíces de $p(x)$, entonces podemos escribir \begin{align*} p(x)&=(x-\alpha)(x-\beta)(x-\gamma)\\ &=x^3-(\alpha+\beta+\gamma)x^2+(\alpha\beta+\beta\gamma+\gamma\alpha)x-\alpha\beta\gamma, \end{align*} de modo que (identificando coeficientes) obtenemos las relaciones de Cardano-Vieta: \[\alpha+\beta+\gamma=-2,\qquad \alpha\beta+\beta\gamma+\gamma\alpha=3,\qquad\alpha\beta\gamma=-4.\] Ahora bien, queremos encontrar un polinomio $q(x)$ cuyas raíces sean $\alpha^2$, $\beta^2$ y $\gamma^2$, luego por un argumento similar al anterior, dicho polinomio será \[q(x)=x^3-(\alpha^2+\beta^2+\gamma^2)x^2+(\alpha^2\beta^2+\beta^2\gamma^2+\gamma^2\alpha^2)x-\alpha^2\beta^2\gamma^2\] y bastará encontrar los tres coeficientes anteriores. Esto no es demasiado dificultoso ya que podemos calcularlos en términos de las cantidades ya conocidas: \[\alpha^2+\beta^2+\gamma^2=(\alpha+\beta+\gamma)^2-2(\alpha\beta+\beta\gamma+\gamma\alpha)=(-2)^2-2\cdot 3=-2,\] \[\alpha^2\beta^2+\beta^2\gamma^2+\gamma^2\alpha^2=(\alpha\beta+\beta\gamma+\gamma\alpha)^2-2\alpha\beta\gamma(\alpha+\beta+\gamma)=3^2-2\cdot 4\cdot 2=-7,\] \[\alpha^2\beta^2\gamma^2=(\alpha\beta\gamma)^2=4^2=16.\] De esta forma, el polinomio buscado es $q(x)=x^3+2x^2-7x-16$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre