Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 933
Calcular la suma de los inversos de los 2013 primeros términos de la sucesión de término general \[a_n=1-\frac{1}{4n^2}.\]
pistasolución 1info
Pista. La suma que se obtiene se transforma fácilmente en una suma telescópica.
Solución. Podemos desarrollar (véase la nota): \begin{align*} S_N=\sum_{n=1}^N\frac{1}{a_n}&=\sum_{n=1}^N\frac{4n^2}{4n^2-1}=\sum_{n=1}^N\left(1-\frac{1}{4n^2-1}\right)\\ &=N-\sum_{n=1}^N\frac{1}{4n^2-1}=N-\frac{1}{2}\sum_{n=1}^N\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right). \end{align*} La última suma es telescópica, es decir, se suman y se restan términos que se cancelan entre sumandos consecutivos. Concretamente, tenemos que \begin{align*}\sum_{n=1}^N\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)&=\left(1-\tfrac{1}{3}\right)+\left(\tfrac{1}{3}-\tfrac{1}{5}\right)+\left(\tfrac{1}{5}-\tfrac{1}{7}\right)+\ldots+\left(\tfrac{1}{2N-1}-\tfrac{1}{2N+1}\right)\\ &=1-\frac{1}{2N+1}=\frac{2N}{2N+1}. \end{align*} De esta forma, podemos calcular \[S_N=N-\frac{1}{2}\cdot\frac{2N}{2N+1}=\frac{2N^2}{2N+1}.\] Por lo tanto, para $N=2013$ obtenemos la suma deseada: $\frac{2\cdot 2013^2}{2027}$.

Nota. Puede parecer un poco mágica la transformación que se hace de la suma original, pero responde a un esquema general similar al proceso de integración de funciones racionales. Esta técnica funciona siempre que se pueda factorizar el denominador con raíces simples racionales.

En primer lugar, se divide numerador entre el denominador para que el grado del denominador sea mayor que el del numerador, lo que nos da \[\frac{4n^2}{4n^2-1}=\frac{4n^2-1+1}{4n^2-1}=1-\frac{1}{4n^2-1}.\] En segundo lugar, visto que $4n^2-1=(2n-1)(2n+1)$, intentamos expresar \[\frac{1}{4n^2-1}=\frac{A}{2n-1}+\frac{B}{2n+1}\ \Leftrightarrow\ 1=(2n+1)A+(2n-1)B\] para ciertas constantes $A,B\in\mathbb{R}$. Para que esta última igualdad entre polinomios sea cierta, se tiene que $A+B=0$ (término en $n$) y $A-B=1$ (término independiente). Por tanto, se sigue que $A=\frac{1}{2}$ y $B=-\frac{1}{2}$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre