Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 94
¿Cuál es el menor valor positivo posible de $36^m-5^n$, siendo $m$ y $n$ números naturales?
pistasolución 1info
Pista. ¿Cuáles pueden ser las cifras de las unidades del número $36^m-5^n$?
Solución. Observemos que la expresión decimal de $36^m$ siempre termina en $6$ mientras que la de $5^n$ siempre lo hace en $5$ luego $36^m-5^n$ siempre termina en $1$ independientemente de los valores de $m$ y $n$. Además, para $m=1$ y $n=2$, el resultado es $11$ luego si descartamos que pueda ocurrir $36^m-5^n=1$, habremos terminado y la respuesta será $11$.

Si ocurriera que $36^m-5^n=1$, entonces $(6^m-1)(6^m+1)=36^m-1=5^n$, de donde $6^m+1$ debería ser una potencia de $5$ pero, módulo $5$, este número es congruente con $2$ y hemos llegado a una contradicción.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre