Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 941
Sean $A$, $B$ y $C$ los vertices de un triángulo y $P$, $Q$ y $R$ los respectivos pies de las bisectrices trazadas desde esos mismos vértices. Sabiendo que $PQR$ es un triángulo rectángulo en $P$, demostrar las siguientes afirmaciones:
  1. $ABC$ es obtusángulo.
  2. En el cuadrilátero $ARPQ$, pese a no ser cíclico, la suma de sus ángulos opuestos es constante.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre