Sea $\Delta ABC$ un triángulo y $D$, $E$ y $F$ tres puntos cualesquiera sobre los lados $AB$, $BC$ y $CA$, respectivamente. Llamemos $P$ al punto medio de $AE$, $Q$ al punto medio de $BF$ y $R$ al punto medio de $CD$. Probar que el área del triángulo $\Delta PQR$ es la cuarta parte del área del triángulo $\Delta DEF$.