Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 972
Sea $ABC$ un triángulo acutángulo y $H$ el punto de intersección de sus alturas. La altura desde $A$ corta a $BC$ en $D$. Sean $M$ y $N$ los puntos medios de $BH$ y $CH$, respectivamente. $DM$ y $DN$ intersecan a $AB$ y $AC$ en $X$ e $Y$, respectivamente. Si $XY$ interseca a $BH$ en $P$ y a $CH$ en $Q$, demostrar que $H$, $P$, $D$ y $Q$ están en una misma circunferencia.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre