OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Si \(P(0)=0\), entonces cero es una raíz de \(P(x)\) y podemos expresar \(P(x)=x^kQ(x)\) para cierto \(k\in\mathbb{N}\) (la multiplicidad de dicha raíz) y cierto polinomio \(Q(x)\) con \(Q(x)\neq 0\). Sustituyendo esta igualdad en la ecuación del enunciado y simplificando, obtenemos que \(Q(x)\) satisface la misma ecuación que \(P(x)\) y, además, \(Q(0)\neq 0\). Por lo que hemos visto en el párrafo anterior, \(Q(x)\) tiene que ser constante \(1\) luego \(P(x)\) es una potencia de \(x\). Deducimos que los polinomios buscados son \(P(x)=1\) y \(P(x)=x^k\) para \(k\in\mathbb{N}\), los cuales cumplen la ecuación como puede comprobarse.