Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 995
Beto juega con su computadora al siguiente juego: inicialmente su computadora elige al azar $30$ números de $1$ a $2015$, y Beto los escribe en una pizarra (puede haber números repetidos); en cada paso, Beto elige un entero positivo $k$ y algunos de los números escritos en el pizarrón, y le resta a cada uno de ellos el número $k$, con la condición de que los números resultantes sigan siendo no negativos. El objetivo del juego es lograr que en algún momento los $30$ números resultantes sean iguales a $0$, en cuyo caso el juego termina. Determine el menor número $n$ tal que, independientemente de los números que inicialmente eligió su computadora, Beto pueda terminar el juego en a lo sumo $n$ pasos.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre