Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 997
Hemos empezado la Olimpiada Matemática puntualmente a las 9:00, como he comprobado en mi reloj, que funcionaba en ese momento correctamente. Cuando he terminado, a las 13:00, he vuelto a mirar el reloj y he visto que las manecillas se habían desprendido de su eje pero manteniendo la posición en la que estaban cuando el reloj funcionaba. Curiosamente las manecillas de las horas y de los minutos aparecían superpuestas exactamente, una sobre otra, formando un ángulo (no nulo) menor que $120^\circ$ con el segundero. ¿A qué hora se me averió el reloj?

Nota. Dar la respuesta en horas, minutos y segundos con un error máximo de un segundo; se supone que, mientras funcionaba el reloj, las manecillas avanzaban de forma continua.

pistasolución 1info
Pista. Calcula los tres instantes exactos en que las manecillas de las horas y los minutos están perfectamente superpuestas.
Solución. Simplemente imaginándonos unas manecillas de reloj nos damos cuenta de que estas están superpuestas tres veces en el intervalo de las 9:00 a las 13:00: la primera vez sobre las 9:50, la segunda sobre las 10:55 y la tercera exactamente a las 12:00. Esta última no puede ser la solución ya que a las 12:00 el segundero también está alineado con las otras manecillas.

Una forma muy ingeniosa de calcular los otros instantes de forma exacta es darse cuenta de que entre las 00:00 y las 12:00, las manecillas de las horas y los minutos se alinean exactamente 12 veces (contando las 00:00 y las 12:00) luego esto ocurre cada $\frac{12}{11}$ de hora. Podemos proceder como sigue:

  • La vez anterior a las 12 en que ocurre el alineamiento horas-minutos es a las $12-\frac{12}{11}=10+\frac{10}{11}$ horas. La fracción $\frac{10}{11}$ nos da $60\cdot\frac{10}{11}=\frac{600}{11}=54+\frac{6}{11}$ minutos y los $\frac{6}{11}$ minutos nos dan $60\cdot\frac{6}{11}=\frac{360}{11}=32+\frac{8}{11}$ segundos. El ángulo que forma el segundero con el minutero es de $6\cdot[(54+\frac{6}{11})-(32+\frac{8}{11})]=\frac{1440}{11}=130+\frac{10}{11}$ grados, que es mayor que $120^\circ$. Esta solución tenemos que descartarla pues.
  • La siguiente vez (hacia atrás) que ocurre el alineamiento es a las $12-\frac{24}{11}=9+\frac{9}{11}$ horas. La fracción $\frac{9}{11}$ nos da $60\cdot\frac{9}{11}=\frac{540}{11}=49+\frac{1}{11}$ minutos y los $\frac{1}{11}$ minutos nos dan $60\cdot\frac{1}{11}=\frac{60}{11}=5+\frac{5}{11}$ segundos. El ángulo que forma el segundero con el minutero es claramente menor que $120^\circ$ ya que las manecillas de las horas y minutos están aproximadamente en el 49 y las de los segundos en el 5 (puede calcularse el ángulo exacto como en el caso anterior).
Deducimos entonces que la hora exacta a la que se estropeó el reloj fue a las 9:49:05, con un error de $\frac{5}{11}\lt 1$ segundos.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre