Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.

VII Olimpiada Matemática Internacional — 1965

Sesión 1

Problema 1240
Hallar todos los números reales $0\leq x\leq 2\pi$ que verifican las desigualdades \[2\cos(x)\leq\left|\sqrt{1+\mathrm{sen}(2x)}-\sqrt{1-\mathrm{sen}(2x)}\right|\leq\sqrt{2}.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1241
Consideremos el sistema de ecuaciones \[\left.\begin{array}{r} a_{11}x_1+a_{12}x_2+a_{13}x_3=0\\ a_{21}x_1+a_{22}x_2+a_{23}x_3=0\\ a_{31}x_1+a_{32}x_2+a_{33}x_3=0 \end{array}\right\},\] donde $x_1,x_2,x_3$ son las incógnitas. Se cumplen además las siguientes condiciones:
  • Los coeficientes $a_{11},a_{22},a_{33}$ son números reales positivos.
  • El resto de coeficientes son números reales negativos.
  • La suma de los coeficientes de cada ecuación es positiva.
Demostrar que el sistema tiene únicamente la solución trivial $x_1=x_2=x_3=0$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1242
Sea $ABCD$ una pirámide de base triangular cuyas aristas $AB$ y $CD$ tienen longitudes $a$ y $b$ respectivamente. La distancia entre las rectas que se cruzan $AB$ y $CD$ es $d$ y el ángulo entre ellas es $\omega$. La pirámide se divide en dos sólidos mediante el plano $\varepsilon$, paralelo a las rectas $AB$ y $CD$. La razón entre las distancias a $\varepsilon$ desde $AB$ y $CD$ es igual a $k$. Hallar la razón entre los volúmenes de estos dos sólidos.

Nota: Las rectas $AB$ y $CD$ en el espacio se cruzan si no son paralelas ni se cortan. El ángulo que forman $AB$ y $CD$ es el ángulo que forman sus proyecciones ortogonales sobre el plano paralelo $\varepsilon$.

Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema

Sesión 2

Problema 1243
Hallar todos los conjuntos de cuatro números reales $x_1,x_2,x_3,x_4$ tales que la suma de cualquiera de ellos y el producto de los otros tres es igual a $2$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1244
Consideremos un triángulo $OAB$ con ángulo agudo $\angle AOB$. Se trazan perpendiculares a $OA$ y $OB$ que pasan por un punto común $M\neq O$ y cuyos pies son $P$ y $Q$, respectivamente. El punto de intersección de las alturas del triángulo $OPQ$ es $H$. ¿Cuál es el lugar geométrico de $H$ cuando $M$ varía en el lado $AB$? ¿Y cuando varía en el interior de $OAB$?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1245
En el plano se tiene un conjunto de $n\geq 3$ puntos y cada par de ellos está conectado por un segmento. Sea $d$ la distancia del más largo de tales segmentos. Definimos un diámetro del conjunto como cualquier segmento de longitud $d$. Demostrar que el número de diámetros del conjunto es a lo sumo $n$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre