Solución. Que los tres últimos dígitos coincidan equivale a que
\[1978^n-1978^m=1978^m(1978^{n-m}-1)\equiv 0\ (\text{mod }1000).\]
Esto implica que $m\geq 3$ ya que $1000=2^35^3$ y nos bastará trabajar módulo $5^3=125$. Vamos a buscar, por tanto, el menor entero $k$ tal que $1978^k\equiv 1\ (\text{mod }125)$. El teorema de Euler-Fermat nos dice que $1978^{\varphi(125)}\equiv 1\ (\text{mod }125)$ ya que $\mathrm{mcd}(125,1978)=1$, siendo $\varphi(125)=5^2(5-1)=100$. El menor exponente $k$ que estamos buscando debe ser un divisor de $100$ (ver nota), lo que nos da las posibilidades $k=1,2,4,5,10,20,25,50,100$. Ahora bien, como $1978\equiv 103\ (\text{mod }125)$, tenemos que
\[1978^{2}\equiv 103^2=10609\equiv 109\ (\text{mod }125),\quad 1978^4\equiv 109^2=11881\equiv 6\ (\text{mod }125),\]
luego podemos calcular
\[1978^{20}\equiv 103^4(103^4)^4=6\cdot 6^4\equiv 6\cdot 36^2\equiv 6\cdot 46\equiv 26\ (\text{mod }125).\]
Esto nos dice que el $k$ buscado no es igual a ninguno de los números $1,2,3,4,10,20$ (divisores de $20$). Probemos ahora $k=50$, lo que nos permitirá descartar también $25$ y $50$:
\[1978^{50}\equiv 103^2((103^4)^4)^3=109\cdot 46^3\equiv 109\cdot 86\equiv 124\ (\text{mod }125).\]
Esto nos deja sólo la posibilidad $k=100$, que nos da $m=3$ y $n=103$. Por tanto, la menor suma posible es $m+n=106$.
Nota. La afirmación de que $k$ debe ser un divisor de $100$ es un hecho conocido, pero vamos a demostrarlo. Si tomamos $d=\mathrm{mcd}(k,100)$, entonces la identidad de Bézout nos dice que existen $u$ y $v$ tales que $d=ku+100v$, luego $1978^d=(1978^k)^u(1978^{100})^v\equiv 1\ (\text{mod }125$. Si $k$ es el menor entero positivo que cumple $1978^k\equiv 1\ (\text{mod }125)$, entonces tiene que ser $d=k$, es decir, $k$ es un divisor de $100$.