Sea $A$ uno de los dos puntos de intersección de dos circunferencias $C_1$ y $C_2$ de distintos radios, cuyos centros denotamos por $O_1$ y $O_2$, respectivamente. Una de las tangentes comunes a los círculos toca a $C_1$ en $P_1$ y a $C_2$ en $P_2$, mientras que la otra tangente común toca a $C_1$ en $Q_1$ y a $C_2$ en $Q_2$. Sea $M_1$ el punto medio de $P_1Q_1$ y $M_2$ el punto medio de $P_2Q_2$. Demostrar que $\angle O_1AO_2=\angle M_1AM_2$.