Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2764 problemas y 1057 soluciones.
Problema 1653problema obsoleto
Denotamos por $m(a,b)$ a la media aritmética de los números reales positivos $a$ y $b$. Dada un función $g:\mathbb{R}^+\to\mathbb{R}^+$ que tiene la primera y la segunda derivada positivas, definimos la media $\mu(a,b)$ relativa a la función $g$ mediante \[2g(\mu(a, b))= g(a)+g(b).\] Decir, razonadamente, cuál de las dos medias $m$ y $\mu$ es mayor.
pistasolución 1info
Pista. Utiliza la desigualdad de Jensen aplicada a la función convexa $g$ (es decir, que la gráfica de $g$ se queda por debajo de cualquier recta secante entre dos puntos). Para dar una demostración rigurosa, usa el desarrollo de Taylor de orden $2$ para la función $g$.
Solución. La función $g(t)$ es convexa por tener segunda derivada positiva, luego la desigualdad de Jensen nos dice que \[g(\mu(a,b))=\frac{g(a)+g(b)}{2}\geq g\left(\tfrac{a+b}{2}\right)=g(m(a,b)).\] Como $g$ es estrictamente creciente por tener primera derivada positiva, su inversa $g^{-1}$ existe y es estrictamente creciente. Aplicando dicha inversa a ambos lados de la desigualdad anterior, obtenemos que $\mu(a,b)\geq m(a,b)$ para cualesquiera $a$ y $b$.

Nota. En realidad, no es necesario que $a$ y $b$ sean positivos para que se cumpla la desigualdad $\mu(a,b)\geq m(a,b)$. Observemos además que la igualdad $\mu(a,b)= m(a,b)$ se alcanza únicamente cuando $a=b$ ya que $g$ es estrictamente convexa.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1627
Demostrar que si $u$ y $v$ son números reales no negativos cualesquiera y $a$ y $b$ son números reales positivos tales que $a+b=1$, entonces \[u^av^b\leq au+bv.\]
pistasolución 1info
Pista. Esta es directamente la desigualdad entre ls medias aritmética y geométrica con pesos. Para dar otra demostración, puedes usar la desigualdad de Jensen con pesos para la función logaritmo.
Solución. La función logaritmo $f(x)=\log(x)$ es cóncava, luego cumple que $af(u)+b(v)\leq f(au+bv)$ para cualesquiera $u,v,a,b\gt 0$ tales que $a+b=1$ (esta es la desigualdad de Jensen y viene del hecho de que el segmento que une los puntos $(u,f(u))$ y $(v,f(v))$ se queda por debajo de la gráfica $y=f(x)$). Podemos escribir entonces \[a\log(u)+b\log(v)\leq\log(au+bv),\] y tomando exponenciales en ambos miembros (la función exponencial es estrictamente creciente), llegamos a la desigualdad del enunciado.

Nota. Como $\log(x)$ es estrictamente convexa, la igualdad se alcanza si y sólo si $u=v$ o bien $a=0$ o $b=0$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1625problema obsoleto
Determinar un polinomio de coeficientes reales no negativos que cumpla las dos condiciones siguientes: \[p(0)=0,\qquad p(|z|)\leq x^4+y^4,\] siendo $|z|$ el módulo del número complejo $z=x+iy$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1610
Demostrar que, si $a_1,a_2,\ldots,a_n$ son números reales positivos, entonces \[(a_1+a_2+\ldots+a_n)\left(\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}\right)\geq n^2.\] ¿Cuándo es válida la igualdad?
pistasolución 1solución 2solución 3info
Pista. Usa la desigualdad entre las medias aritmética y armónica o la desigualdad de Cauchy-Schwarz.
Solución. Si expresamos la desigualdad como \[\frac{a_1+a_2+\ldots+a_n}{n}\geq\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n}},\] se ve claramente que no es más que la desigualdad entre las medias aritmética y armónica para los números reales positivos $a_1,\ldots,a_n$. La igualdad se alcanza si y sólo si todos los números son iguales.
Solución. Si usamos la desigualdad de Cauchy-Schwarz aplicada a los números $x_k=\sqrt{a_k}$ e $y_k=\frac{1}{\sqrt{a_k}}$, obtenemos directamente la desigualdad del enunciado: \begin{align*} n^2&=(x_1y_1+x_2y_2+\ldots+x_ny_n)^2\\ &\leq(x_1^2+x_2^2+\ldots+x_n^2)(y_1^2+y_2^2+\ldots+y_n^2)\\ &=(a_1+a_2+\ldots+a_n)(\tfrac{1}{a_1}+\tfrac{1}{a_2}+\ldots+\tfrac{1}{a_n}). \end{align*} La igualdad se alcanzará cuando exista $\lambda>0$ tal que $x_k=\lambda y_k$ para todo $k$, es decir, cuando $a_k=\lambda$ para todo $k$, es decir, cuando todos los números son iguales.
Solución. Si multiplicamos los paréntesis, nos encontramos con $n$ sumandos iguales a $1$ (que corresponden a multiplicar $a_k\cdot\frac{1}{a_k}$) y luego pares de sumandos $\frac{a_i}{a_j}+\frac{a_j}{a_i}$ con $i\lt j$. Cada uno de estos pares es la suma de un número y su inverso, luego es mayor o igual que $2$. Como hay tantos pares de este tipo como parejas de subíndices, tendremos $\binom{n}{2}=\frac{n(n-1)}{2}$ pares y se cumplirá que \[(a_1+a_2+\ldots+a_n)\left(\tfrac{1}{a_1}+\tfrac{1}{a_2}+\ldots+\tfrac{1}{a_n}\right)\geq n+2\cdot\tfrac{n(n-1)}{2}=n^2.\] La igualdad se alcanza cuando $\frac{a_i}{a_j}+\frac{a_j}{a_i}=2$ para todo $i\lt j$, lo que equivale a que $(a_i-a_j)^2=0$ para todo $i\lt j$, es decir, que todos los números son iguales.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1590
El precio de un diamante es proporcional al cuadrado de su peso. Demostrar que, rompiéndolo en dos partes, existe una depreciación de su valor. ¿Cuándo es máxima dicha depreciación?
pistasolución 1info
Pista. Si los trozos pesan $x$ e $y$, tendrás que hallar cuándo $(x+y)^2-x^2-y^2$ es máximo.
Solución. Supongamos que rompemos el diamante de peso $p$ en dos trozos de pesos $x$ e $y$, luego el precio original y el precio tras romperlo son proporcionales a $p^2=(x+y)^2$ y $x^2+y^2$, respectivamente. La depreciación guardará la misma proporción con $(x+y)^2-x^2-y^2=2xy$, luego nos estamos preguntando cuándo será máximo $2xy$ sujetos a la restricción $x+y=p$. De aquí podemos despejar $2xy=2x(p-x)$, con lo que queremos hallar el máximo de la función $f(x)=2x(p-x)$ cuando $0\leq x\leq p$. Esta parábola se anula en $x=0$ y $x=p$, por lo que tendrá su vértice (máximo) en $x=\frac{p}{2}$. Deducimos así que hay romper el diamante en dos partes iguales para que la depreciación sea máxima.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2026. Esta página ha sido creada mediante software libre