Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2764 problemas y 1057 soluciones.
Problema 1045
¿De cuántas maneras se puede escribir $111$ como suma de tres números enteros en progresión geométrica?
pistasolución 1info
Pista. Es importante fijarse en que la razón es un número racional $r=\frac{m}{n}$, en cuyo caso los tres términos se pueden escribir como $bm^2$, $bmn$ y $bn^2$ para ciertos enteros $m,n,b\in\mathbb{Z}$, que pueden suponerse no nulos.
Solución. Pongamos que los tres números son $a$, $ar$ y $ar^2$, donde $r$ es la razón de la progresión geométrica. Como $r=\frac{ar}{a}$ tiene que ser un número racional no nulo, podemos escribirlo como fracción irreducible $r=\frac{m}{n}$ con $m\in\mathbb{Z}$ no nulo y $n\gt 0$. Como $ar^2$ también es entero, existirá $b$ tal que $a=bn^2$. En definitiva, podemos escribir los tres números como $bn^2,bmn,bm^2$, donde $b,m,n$ son enteros. La condición del enunciado se escribe entonces como \[111=bn^2+bmn+bm^2=b(n^2+mn+m^2).\] Esto nos dice que $b$ y $n^2+mn+m^2$ son factores complementarios de $111=3\cdot 37$ y tienen que ser ambos positivos puesto que $n^2+mn+m^2=\frac{1}{2}(m^2+n^2+(m+n)^2)\gt 0$ dado que $n\gt 0$. Tenemos entonces cuatro casos posibles:
  • Caso $b=111$ y $n^2+mn+m^2=1$. Obtenemos $m^2+n^2+(m+n)^2=2$ y esto sólo es posible si $(m,n)=(-1,1)$ ya que $n$ ha de ser positivo.
  • Caso $b=37$ y $n^2+mn+m^2=3$. Obtenemos $m^2+n^2+(m+n)^2=6$ y, como la única forma de escribir $6$ como suma de tres cuadrados es $4+1+1$, es fácil ver que las únicas soluciones son $(m,n)=(-2,1)$, $(m,n)=(-1,2)$ y $(m,n)=(1,1)$ (las obtenemos según en que sumando pongamos el 4 recordando además que $n$ tiene que ser positivo).
  • Caso $b=3$ y $n^2+mn+m^2=37$. Obtenemos $m^2+n^2+(m+n)^2=74$ y las formas de escribir $74$ como suma de tres cuadrados son $64+9+1$, $49+25+0$ y $49+16+9$ (se comprueba caso por caso). El subcaso $64+9+1$ nos lleva a que $m,n,m+n$ son los números $\pm 1,\pm 3,\pm 8$ en algún orden y se ve fácilmente que no hay solución ($\pm 8$ no es suma ni diferencia de $\pm 1$ y $\pm 3$). El subcaso $49+25+0$ tampoco tiene solución por el mismo motivo. Sin embargo, el subcaso $49+16+9$ nos da las soluciones $(m,n)=(3,4)$, $(m,n)=(4,3)$, $(m,n)=(-3,7)$, $(m,n)=(-7,3)$, $(m,n)=(-4,7)$ y $(m,n)=(-7,4)$.
  • Caso $b=1$ y $n^2+mn+m^2=111$. Obtenemos $m^2+n^2+(m+n)^2=222$ y las formas de escribir $222$ como suma de tres cuadrados son $196+25+1$, $169+49+4$ y $121+100+1$. Las dos primeras no dan solución ya que $196$ y $169$ están muy alejados de los otros cuadrados como ocurría en el caso anterior. En el subcaso de $121+100+1$, tenemos las soluciones $(m,n)=(10,1)$, $(m,n)=(1,10)$, $(m,n)=(-11,1)$, $(m,n)=(-1,11)$, $(m,n)=(-11,10)$ y $(m,n)=(-10,11)$.
Cada una de estas soluciones nos da una progresión geométrica, luego tenemos una solución para $b=1$, tres para $b=3$, seis para $b=37$ y seis para $b=111$. Deducimos que hay un total de $16$ soluciones.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1032
Determina el número de valores distintos que toma la expresión \[\frac{n^2-2}{n^2-n+2}\] cuando $n$ es un número entero entre $1$ y $100$.
pistasolución 1info
Pista. Resuelve la ecuación \[\frac{n^2-2}{n^2-n+2}=\frac{m^2-2}{m^2-m+2}.\]
Solución. Observamos en primer lugar que la expresión está definida para todo entero $n$ ya que la ecuación $x^2-x+2$ no tiene soluciones reales. Veremos entonces cuándo dos valores se repiten, para lo que calculamos \begin{align*} \frac{n^2-2}{n^2-n+2}=\frac{m^2-2}{m^2-m+2}&\ \Leftrightarrow\ \frac{(n^2-2)(m^2-m+2)-(m^2-2)(n^2-n+2)}{(n^2-n+2)(m^2-m+2)}=0\\ &\ \Leftrightarrow\ \frac{m^2 n-4 m^2-m n^2+2 m+4 n^2-2 n}{(n^2-n+2)(m^2-m+2)}=0\\ &\ \Leftrightarrow\ \frac{(m-n)(2-4m-4n+mn)}{(n^2-n+2)(m^2-m+2)}=0. \end{align*} La última factorización puede ser difícil de encontrar si no sabemos que realmente tiene que haber un factor $m-n$ ya que se trata de expresiones polinómicas y para $m=n$ se tiene la igualdad que buscamos. En cualquier caso, las parejas que producirán valores iguales de la expresión del enunciado son las soluciones de $2-4m-4n+mn=0$. Esta ecuación se puede expresar como \[(m-4)(n-4)=14,\] por lo que $m-4$ y $n-4$ tienen que ser factores complementarios de $14$. Además, tienen que ser $m,n\geq 1$, luego $m-4,n-4\geq -3$ y no se puede tratar de factores negativos. Suponiendo además que $m\lt n$ sin perder generalidad, tenemos sólo dos casos:
  • $m-4=1$ y $n-4=14$,
  • $m-4=2$ y $n-4=7$.
Deducimos de todo esto que todo entero $n$ entre $1$ y $100$ da un valor distinto al sustituirlo en la expresión dada, salvo las parejas $(5,18)$ y $(6,11)$, que dan el mismo valor. Por tanto, hay $98$ valores distintos de la expresión.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1030
Hallar los valores enteros positivos de $m$ para los que existe una función $f$ del conjunto de los números enteros en sí mismo tal que $f^m(n)=n+2017$.

Nota. La función $f^m$ consiste en aplicar $m$ veces sucesivas la función $f$.

pistasolución 1info
Pista. Demuestra que $f(n+2017)=f(n)+2017$ y, con esto, observa que $f$ induce una aplicación biyectiva entre los restos módulo $2017$. También es importante utilizar en algún momento que $2017$ es primo.
Solución. La primera observación es que aplicar $m+1$ veces $f$ puede hacerse como $f\circ f^m$ o $f^m\circ f$. Ambas formas nos dan el mismo resultado, luego se cumple que \[f(n+2017)=f(f^m(n))=f^m(f(n))=f(n)+2017.\] En particular, sólo es necesario conocer $f(1),f(2),\ldots,f(2017)$ para conocer completamente la función $f$ y también se tiene que el resto de $f(n)$ módulo $2017$ sólo depende del resto de $n$ módulo $2017$. Como $f^m(n)=n+2017$, la función toma en su imagen todos los restos posibles y deducimos que la función $\theta(n)=f(n)\,\pmod{2017}$ es una biyección del conjunto $\{0,1,\ldots,2016\}$ en sí mismo.

Fijemos $n\in\{0,\ldots,2016\}$. La sucesión de restos $\{n,\theta(n),\theta^2(n),\theta^3(n),\ldots\}$ toma un número finito de valores y cada valor sólo depende del anterior, luego tiene que ser periódica. Como $\theta$ es una biyección, existirá un primer exponente $k\geq 1$ tal que $\theta^k(n)=n$, es decir, $f^k(n)$ es el primer elemento de la sucesión $\{f(n),f^2(n),f^3(n),\ldots\}$ que es congruente con $n$ módulo $2017$ y, por tanto, $f^k(n)=n+2017a$ para cierto $a\in\Z$. Entonces, tenemos que los únicos números de dicha sucesión que son congruentes con $n$ son los de la forma $f^{ck}(n)$, pero podemos calcularlos usando $(\star)$ recursivamente como \[f^{ck}(n)=f^k(f^k(\ldots(f^k(n))\ldots))=n+2017ca.\] Por lo tanto, el número $m$ que buscamos tiene que ser múltiplo de $k$ y tiene que ser $ca=1$, es decir $c=a=1$, luego no puede ser otro que $k=m$.

Con todo esto, se tiene que para cada $n$ hay exactamente $m$ restos de $\{0,1,\ldots,2016\}$ que aparecen periódicamente en la sucesión $\{n,\theta(n),\theta^2(n),\theta^3(n),\ldots\}$. Para distintos valores de $m$, estos restos son distintos, luego $2017$ tiene que poder partirse en subconjuntos de $m$ elementos y, en particular, $2017$ ser múltiplo de $m$. Como $2017$ es primo, no quedan más opciones que $m=1$ y $m=2017$. Comprobamos efectivamente que estos valores cumplen la condición, pues basta tomar $f(n)=n+2017$ si $m=1$ o bien $f(n)=n+1$ si $m=2017$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1026
Encontrar todas las soluciones enteras positivas de \[\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b+c-2}=1.\]
pistasolución 1info
Pista. Observa que si alguno de los números es mayor o igual que $4$, entonces no se verifica la ecuación.
Solución. La idea es que los números $a,b,c$ tienen que ser pequeños porque en caso de ser grandes la suma de la izquierda será menor que $1$. La expresión es simétrica en las tres variables, luego asumiremos que $a\geq b\geq c$ sin perder generalidad. Supongamos en primer lugar que $a\geq 4$. Si además se tiene que $b\geq 2$, entonces podemos acotar \[\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b+c-2}\leq\frac{1}{6}+\frac{1}{3}+\frac{1}{5}+\frac{1}{5}=\frac{9}{10}\lt 1.\] Por lo tanto, tiene que ser $b=1$ y esto nos lleva a que $c=1$. La ecuación original para $b=c=1$ se puede reescribir como $a^2-5a-2=0$, que no tiene soluciones enteras.

Lo anterior prueba que $c\leq b\leq a\leq 3$, lo que nos da sólo unas pocas posibilidades para la terna $(a,b,c)$ con $a=3$. Estas son $(3,3,3)$, $(3,3,2)$, $(3,3,1)$, $(3,2,2)$, $(3,2,1)$ y $(3,1,1)$ y se puede probar una por una que no cumplen la ecuación original. Para $a=2$ tenemos las ternas $(2,2,2)$, $(2,2,1)$ y $(2,1,1)$, de las cuales únicamente $(2,2,2)$ verifica la ecuación. Finalmente, la terna $(1,1,1)$ es la única con $a=1$ y no verifica la ecuación.

Por lo tanto, la única solución de la ecuación dada es $a=b=c=2$.

Nota. En realidad se puede refinar un poco el argumento final para no tener que probar explícitamente las diez ternas con $a\leq 3$, pero seguramente es más rápido en una olimpiada probar una por una que invertir tiempo en dar un argumento que elimine algunas de ellas.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1022
Se considera la función $f:\mathbb{N}\to\mathbb{Z}$ definida para $n\geq 0$ como sigue: \[f(n)=\begin{cases}-f(\frac{n}{2})&\text{si }n\text{ es par},\\ f(n-1)+1&\text{si }n\text{ es impar.}\end{cases}\]
  1. Demostrar que $f(n)$ es múltiplo de $3$ si, y solo si, $n$ es múltiplo de $3$.
  2. Hallar el menor número n que cumple $f(n) = 2017$.
pistasolución 1info
Pista. Piensa en binario.
Solución. Vamos a comenzar probando que, si $0\leq e_1\lt e_2\lt\ldots\lt e_k$ son enteros, entonces se cumple que \[f(2^{e_1}+2^{e_2}+\ldots+2^{e_k})=(-1)^{e_1}+(-1)^{e_2}+\ldots+(-1)^{e_k}.\] Como todo entero positivo se expresa de forma única como suma de potencias distintas de $2$ (pensemos en el número escrito en el sistema binario), lo anterior nos determina completamente a $f$. Observamos también que $0$ es par, luego $f(0)=0$. Para ver cómo se nos puede ocurrir la fórmula anterior, véase la nota más abajo.

Vamos a probar la fórmula anterior por inducción sobre el número de sumandos $k$. Si $k=1$, entonces $f(2^{e_1})=(-1)^{e_1}f(1)$ aplicando reiteradamente la definición de $f(n)$ para $n$ par. Además, se tiene que $f(1)=f(0)+1=1$, lo que prueba que $f(2^{e_1})=(-1)^{e_1}$, como queríamos. Supongamos entonces que la igualdad es cierta para $k-1$ sumandos y demostrémosla para $k$ sumandos. Suponiendo que $e_1$ es el exponente más pequeño (como arriba), tenemos que \begin{align*} f(2^{e_1}+2^{e_2}+\ldots+2^{e_k})&=(-1)^{e_1}f(1+2^{e_2-e_1}+\ldots+2^{e_k-e_1})\\ &=(-1)^{e_1}(1+f(2^{e_2-e_1}+\ldots+2^{e_k-e_1}))\\ &\stackrel{(\star)}{=}(-1)^{e_1}(1+(-1)^{e_2-e_1}+\ldots+(-1)^{e_k-e_1})\\ &=(-1)^{e_1}+(-1)^{e_2}+\ldots+(-1)^{e_k}, \end{align*} donde en el la igualdad $(\star)$ se ha usado la hipótesis de inducción.

Teniendo en cuenta lo anterior y que $2\equiv -1\ (\text{mod }3)$ tenemos claramente el apartado (a). Si expresamos $n=2^{e_1}+\ldots+2^{e_k}$ como suma de potencias distintas de $2$, entonces \[f(n)=(-1)^{e_1}+\ldots+(-1)^{e_k}\equiv 2^{e_1}+\ldots+2^{e_k}=n\ (\text{mod }3),\] luego $f(n)$ es múltiplo de $3$ si y sólo si lo es $n$.

En cuanto al apartado (b), cada potencia de $2$ de exponente par suma una unidad y cada potencia de exponente impar resta una unidad, luego el menor $n$ tal que $f(n)=2017$ será la suma de las primeras $2017$ potencias de $2$ pares, es decir, la solución que buscamos es \[n=2^0+2^2+2^4+\ldots+2^{2\cdot 2016}=1+4+4^2+\ldots+4^{2016}=\frac{4^{2017}-1}{3},\] donde hemos usado la fórmula para la suma de los términos de una progresión geométrica.

Nota. Veamos cómo justificar la idea feliz con la que empieza la solución. Supongamos que el número $n$ está escrito en el sistema binario, únicamente con ceros y unos. Hagamos algunas observaciones previas:

  • Por un lado, $n$ es par cuando su último dígito es $0$, en cuyo caso $\frac{n}{2}$ consiste en eliminar ese cero. Por lo tanto, si $n$ termina en $r$ ceros, tendremos que es múltiplo de $2^r$ y $f(n)=(-1)^rf(\frac{n}{2^r})$, donde ahora hay que calcular $f$ sobre el número $\frac{n}{2^r}$, que consiste en eliminar esos $r$ ceros de la expresión de $n$.
  • Por otro lado, $n$ es impar cuando su último dígito es $1$ y ahora $n-1$ consiste en cambiar ese $1$ por un $0$. Por tanto, $f(n)=f(n-1)+1$ reduce el problema a calcular $f$ sobre un número que termina en ceros y aplicar el caso previo.
  • Los pasos anteriores reducen progresivamente el número de dígitos de $n$ hasta llegar a un punto en que es necesario calcular $f(0)$. Por la propia ecuación, como $0$ es par, tendremos que $f(0)=-f(0)$, luego $f(0)=0$ necesariamente.

De esta forma, no es difícil convencerse de que para calcular $f(n)$, sólo hay que leer $f$ en binario de derecha a izquierda, sumando $1$ por cada $1$ que vayamos encontrando y multiplicando por $(-1)^{r+1}$ siempre que nos encontremos $r$ ceros seguidos. Esto se resume en que cada $1$ que aparece introduce realmente un sumando $(-1)^{s+1}$, siendo $s$ la posición en la que aparece y podemos intuir así que cada sumando $2^s$ se transforma en un sumando $(-1)^s$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2026. Esta página ha sido creada mediante software libre