Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1673problema obsoleto
Sean $a$ y $b$ enteros diferentes de $0$, $1$ y $-1$ y consideremos la matriz \[\begin{pmatrix} a+b&a+b^2&a+b^3&\cdots&a+b^m\\ a^2+b&a^2+b^2&a^2+b^3&\cdots&a^2+b^m\\ a^3+b&a^3+b^2&a^3+b^3&\cdots&a^3+b^m\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ a^n+b&a^n+b^2&a^n+b^3&\cdots&a^n+b^m \end{pmatrix}.\] Determinar un subconjunto $S$ de filas de esa matriz, lo menor posible, tal que cualquier otra fila se pueda expresar como suma de las filas de $S$ multiplicadas por números enteros apropiados (es decir, como combinación lineal con coeficientes enteros de las filas de $S$). Explicitar dichas combinaciones lineales.
pistasolución 1info
Pista. Intenta escribir las filas a partir de la tercera como combinación lineal de las dos primeras.
Solución. Las filas a partir de la tercera se pueden escribir como combinación lineal de las dos primeras. Esto equivale a que, para cada $i\geq 3$, existan $\lambda_i,\mu_i\in\mathbb{R}$ tales que \[a^i+b^j=\lambda_i(a+b^j)+\mu_i(a^2+b^j)\ \Leftrightarrow\ (\lambda_i+\mu_i-1)b^j+a(\lambda_i+a\mu_i-a^i)=0.\] Podemos tomar $\mu_i=1-\lambda_i$ para anular el primer paréntesis y luego el segundo nos queda $\lambda_i+a(1-\lambda_i)=a^i$, de donde despejamos (ya que $a\neq 1$): \[\lambda_i=a\frac{a^{i-1}-1}{1-a},\qquad \mu_i=1-\lambda_i=\frac{1-a^i}{1-a}.\] Como $\frac{1-a^k}{1-a}=1+a+\ldots+a^{k-1}$ para todo $k\geq 1$, resulta que tanto $\lambda_i$ como $\mu_i$ son números enteros y tenemos que la respuesta al enunciado es como máximo $2$. Para ver que la solución realmente es $2$, comprobamos que las dos primeras filas son linealmente independientes (tienen rango 2), lo que se deduce del menor \begin{align*} \left|\begin{matrix}a+b&a+b^2\\a^2+b&a^2+b^2\end{matrix}\right|&=(a+b)(a^2+b^2)-(a+b^2)(a^2+b)\\ &=ab(a+b-1-ab)=-ab(a-1)(b-1)\neq 0 \end{align*} ya que $a$ y $b$ no toman los valores $0$ ni $1$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1669
Sean $x$ e $y$ dos números reales positivos. Probar que la expresión \[A=\sqrt{x}+\sqrt{y}+\sqrt{xy}\] se puede escribir en la forma \[B=\sqrt{x}+\sqrt{y+xy+2y\sqrt{x}}.\] Comparar los números $L$ y $M$ dados por \begin{align*} L&=\sqrt{3}+\sqrt{10+2\sqrt{3}},\\ M&=\sqrt{5+\sqrt{22}}+\sqrt{8-\sqrt{22}+2\sqrt{15-3\sqrt{22}}}. \end{align*}
pistasolución 1info
Pista. Observa que $(\sqrt{z}+\sqrt{w})^2=z+w+2\sqrt{zw}$.
Solución. Para la primera parte, basta observar que \[(\sqrt{y}+\sqrt{xy})^2=y+2\sqrt{y}\sqrt{xy}+xy=y+xy+2y\sqrt{x}\] y tomar raíces cuadradas en ambos miembros usando que $\sqrt{y}+\sqrt{xy}\gt 0$.

Para la segunda parte, podemos hacer un razonamiento similar para $x=\frac{5}{3}-\frac{1}{3}\sqrt{5}$ e $y=3$, lo que nos da la igualdad \[\left(\sqrt{3}+\sqrt{5-\sqrt{22}}\right)^2=8-\sqrt{22}+2\sqrt{15-3\sqrt{22}}\] y podemos transformar \begin{align*} M&=\sqrt{3}+\sqrt{5+\sqrt{22}}+\sqrt{5-\sqrt{22}}\\ &=\sqrt{3}+\sqrt{(5+\sqrt{22})+(5-\sqrt{22})+2\sqrt{5+\sqrt{22}}\sqrt{5-\sqrt{22}}}\\ &=\sqrt{3}+\sqrt{10+2\sqrt{25-22}}=\sqrt{3}+\sqrt{10+2\sqrt{3}}. \end{align*}

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1668problema obsoleto
Sea $\mathcal D$ el conjunto de los números complejos que se pueden escribir en la forma $a+b\sqrt{-13}$, con $a$ y $b$ enteros. El número $14=14+0\sqrt{-13}$ puede escribirse como producto de dos elementos de $\mathcal{D}$ (por ejemplo, $14=2\cdot 7$). Expresar $14$ como producto de dos elementos de $\mathcal D$ de todas las formas posibles.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1662
Se atribuye al matemático renacentista Leonardo da Pisa (más conocido como Fibonacci) la sucesión definida de la manera siguiente: \[a_1=1,\qquad a_2=1,\qquad a_i=a_{i-1}+a_{i-2}\quad\text{para todo } i\gt2.\] Expresar $a_{2n}$ en función solamente de los tres términos $a_{n-1}$, $a_n$ y $a_{n+1}$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1660problema obsoleto
Para cada número natural $n$ se considera el polinomio $P_n(x)=x^{n+2}−2x+1$.
  1. Demostrar que la ecuación $P_n(x)=0$ tiene una raíz $c_n$ y sólo una en el intervalo $(0,1)$.
  2. Calcular $\lim_{n\to\infty}c_n$.
pista
Sin soluciones
info
Pista. Utilizar el teorema de Bolzano y la monotonía de $P_n(x)$ en el intervalo $[0,1]$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre