Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.
Problema 1725
Todas las caras del tetraedro $ABCD$ son triángulos acutángulos. Consideremos todas las poligonales cerradas de la forma $XYZTX$ en las que $X,Y,Z,T$ son puntos interiores de las aristas $AB,BC,CD,DA$, respectivamente.
  1. Si $\angle DAB+\angle BCD\neq \angle CDA+\angle ABC$, demostrar que entre todas las poligonales no hay ninguna de longitud mínima.
  2. Si $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, entonces hay una cantidad infinita de poligonales distintas de longitud mínima, siendo $2AC\,\mathrm{sen}(\alpha/2)$ dicha longitud mínima y $\alpha=\angle BAC+\angle CAD+\angle DAB$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre