Dado un número natural $n\in\mathbb{N}$, demostrar que $1989^n$ se puede escribir como suma de dos cuadrados de enteros positivos como mínimo de dos formas diferentes.
pistasolución 1info
Pista. Observa la identidad $(a^2+b^2)(c^2+d^2)=(ac-bd)^2+(ad+bc)^2$.
Solución. Para $n=1$, tenemos que $1989=9\cdot 221= 3^2(10^2+11^2)=3^2(5^2+14^2)$. Para $n=2$, tenemos que
\[1989^2=9^2\cdot 221^2= 9^2\cdot 48841=9^2(85^2+204^2)=9^2(104^2+195^2).\]
De aquí el resultado es inmediato ya que basta multiplicar uno de estos dos números por el cuadrado perfecto $1989^{2n}=(1989^n)^2$ para obtener cualquier potencia de $1989$. Obviamente, los dos resultados obtenidos de las descomposiciones anteriores son distintos.