Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
OMCC
Retos UJA
Selector
La base de datos contiene 2434 problemas y 940 soluciones.

IV Olimpiada Matemática Española (fase nacional) — 1967

Sesión 1

Problema 1439problema obsoleto
Se sabe que la función real $f(t)$ es monótona creciente en el intervalo $−8\leq t\leq 8$, pero no se sabe nada de lo que ocurre fuera de éste. ¿En qué intervalo de valores de $x$ se puede asegurar que sea monótona creciente la función $f(2x-x^2)$?
pistasolución 1info
Pista. Calcula cuándo $g(x)=2x-x^2$ cae en el intervalo $[-8,8]$ y también ten en cuenta su propia monotonía.
Solución. Observamos que la función $g(x)=2x-x^2=1-(x-1)^2$ toma el valor $-8$ en $x=-2$ y $x=4$, pero no toma el valor $8$ ya que tiene su máximo en $x=1$, donde vale $1$. Además, en $[-2,1]$ es creciente y en $[1,4]$ es decreciente. Por lo tanto:
  • Fuera del intervalo $(-2,4)$ no sabemos la monotonía de $f(g(x))$ ya que desconocemos lo que le pasa a $f$ fuera del intervalo $[-8,8]$.
  • Para $x,y\in[-2,1]$ con $x\lt y$, se tiene que $-8\leq g(x)\leq g(y)\leq 1$, luego $f(g(x))\leq f(g(y))$ y hemos probado que $f(g(x))$ es monótona creciente en $[-2,1]$.
  • Para $x,y\in[1,4]$ con $x\lt y$, se tiene que $-8\leq g(y)\leq g(x)\leq 1$, luego $f(g(y))\leq f(g(x))$ y tenemos que $f(g(x))$ es monótona decreciente en $[1,4]$.

Por lo tanto, solo podemos asegurar que $f(2x-x^2)$ es monótona creciente en $[-2,1]$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1440problema obsoleto
Determinar los polos de las inversiones que transforman cuatro puntos $A,B,C,D$ alineados en este orden en cuatro puntos $A',B',C',D'$ que sean vértices de un rectángulo y tales que $A'$ y $C'$ sean vértices opuestos.
pista
Sin soluciones
info
Pista. Fíjate en que las rectas $A'C'$ y $B'D'$ son diámetros que cortan perpendicularmente a la circunferencia circunscrita al rectángulo $A'B'C'D'$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1441
Un semáforo instalado en un cruce principal de una vía en la que se circula en ambos sentidos permanece en rojo $30$s y en verde otros $30$s, alternativamente. Se desea instalar otro semáforo en la misma vía, para un cruce secundario situado a $400$m de distancia del primero, que funcione con el mismo período de 1 min de duración. Se quiere que los coches que circulan a $60$km/h por la vía en cualquiera de los dos sentidos y que no se tienen que parar si sólo hubiese el semáforo del cruce principal tampoco se tengan que parar después de instalar el del cruce secundario. ¿Cuántos segundos puede estar encendido el rojo en el semáforo secundario?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1442
Se tiene un botella de fondo plano y circular, cerrada y llena parcialmente de vino, de modo que su nivel no supere la parte cilíndrica. Discutir en qué casos se puede calcular la capacidad de la botella sin abrirla, disponiendo solamente de un doble decímetro graduado; en caso de que sea posible, describir cómo se calcularía. (Problema de la Gara Matematica italiana)
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema

Sesión 2

Problema 1443
Sea $\gamma$ una semicircunferencia de diámetro $AB$. Se construye una línea poligonal con origen en $A$ y que tiene sus vértices alternativamente en el diámetro $AB$ y en la semicircunferencia $\gamma$, de modo que sus lados forman ángulos iguales $\alpha$ con el diámetro, como se muestra en la figura.
  1. Hallar los valores del ángulo $\alpha$ para que la poligonal pase por el otro extremo $B$ del diámetro.
  2. La longitud total de la poligonal, en el caso que termine en $B$, en función de la longitud $d$ del diámetro y del ángulo $\alpha$.
imagen
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1444
Se tiene un triángulo equilátero $ABC$ de centro $O$ y radio $OA=R$ y se consideran las siete regiones que las rectas que contienen los lados determinan sobre el plano. Se pide dibujar y describir la región del plano tansformada de las dos regiones sombreadas en la figura por la inversión de centro $O$ y potencia $R^2$.
imagen
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1445
Por una carretera circula una caravana de coches, todos a la misma velocidad, manteniendo la separación mínima entre uno y otro dada, en metros, por $v^2/100$, donde $v$ es la velocidad expresada en km/h. Suponiendo que la longitud de cada coche es de $2.89$m, calcular la velocidad a la que deben circular para que la capacidad de tráfico resulte máxima, es decir, para que en un tiempo fijado pasen el máximo número de vehículos por un punto de la carretera.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre