Administración     

Olimpiadas de Matemáticas
Página de preparación y problemas

OME Local
OME Andaluza
OME Nacional
OIM
IMO
EGMO
USAMO
ASU
APMO
OMCC
Retos UJA
Selector
La base de datos contiene 2748 problemas y 1042 soluciones.

VI Olimpiada Matemática Española (fase nacional) — 1969

Sesión 1

Problema 1479
Hallar el lugar geométrico de los centros de las inversiones que transforman dos puntos $A$ y $B$ de una circunferencia dada $\Gamma$ en puntos diametralmente opuestos de las circunferencias inversas de $\Gamma$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1480problema obsoleto
Hallar el lugar geométrico de los afijos de los números complejos $z$ tales que los afijos $z$, $i$ e $iz$ están alineados.
pistasolución 1info
Pista. Escribe los números complejos como puntos en coordenadas en el plano tomando la parte real y la parte imaginaria.
Solución. Que estén alineados quiere decir que existe un número real $\lambda\in\mathbb{R}$ tal que $z-i=\lambda(i-iz)$. De esta ecuación puede despejarse fácilmente \[z=\frac{i(\lambda+1)}{1+\lambda i}=\frac{i(\lambda+1)(1-\lambda i)}{1+\lambda^2}=\frac{\lambda(1+\lambda)}{1+\lambda^2}+\frac{\lambda+1}{1+\lambda^2}i,\] luego el problema se reduce a entender qué representan esos números complejos al variar $\lambda\in\mathbb{R}$. Si llamamos $x=\frac{\lambda(1+\lambda)}{1+\lambda^2}$ a la parte real e $y=\frac{\lambda+1}{1+\lambda^2}$ a la parte imaginaria, tenemos que \[x^2+y^2=\frac{\lambda^2(1+\lambda)^2}{(1+\lambda^2)^2}+\frac{(1+\lambda)^2}{(1+\lambda^2)^2}=\frac{(1+\lambda)^2}{1+\lambda^2}=x+y,\] que puede reescribirse como \[(x-\tfrac{1}{2})^2+(y-\tfrac{1}{2})^2=\tfrac{1}{2}.\] Esto nos dice que los puntos del enunciado están contenidos en la circunferencia de centro $\frac{1}{2}+\frac{1}{2}i$ y radio $\frac{1}{\sqrt{2}}$. Al variar $\lambda\in\mathbb{R}$ es fácil ver que las funciones $(x,y)$ recorren todos los puntos de la circunferencia excepto el $(1,0)$. Este hay que incluirlo también ya que se corresponde con el límite $\lambda=\pm\infty$ y se puede obtener para $\lambda=0$ cuando cambiamos la relación $z-i=\lambda(i-iz)$ por $\lambda(z-i)=i-iz$.

Nota. En realidad la condición de alineación debería escribirse rigurosamente como $\lambda(z-i)=\mu(i-iz)$ para ciertos números reales $\lambda,\mu\in\mathbb{R}$, que refleja el hecho de que, como vectores, $z-i$ e $i-iz$ son proporcionales.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1481
Una bolsa contiene cubos de plástico del mismo tamaño cuyas caras han sido pintadas de cada una de un color distinto de entre seis colores: blanco, rojo, amarillo, verde, azul y violeta. ¿Cuántos de estos cubos puede haber distinguibles entre sí?
pistasolución 1info
Pista. Fija un color en una cara y discute cómo se pueden colorear las otras para obtener dados distintos, que no se puedan recolocar para que coincidan.
Solución. Fijemos la cara de color blanco (podría ser cualquier otro). Hay cinco posibles colores en la cara opuesta. Para cada uno de ellos, podemos tomar una de las cuatro caras restantes y fijar otro color. Para la casilla opuesta a este último habrá tres posibles colores. Finalmente, hay dos posibles colocaciones de los dos colores restantes y son distinguibles. Por tanto, el número de dados distintos es $5\cdot 3\cdot 2=30$.
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1482
Se divide una circunferencia de radio $R$ en ocho partes iguales. Los puntos de división se designan sucesivamente por $A$, $B$, $C$, $D$, $E$, $F$, $G$ y $H$. Hallar el área del cuadrado formado al dibujar las cuerdas $AF$, $BE$, $CH$ y $DG$.
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema

Sesión 2

Problema 1483
  1. Demostrar que un polígono convexo de más de cuatro lados no puede ser descompuesto en otros dos, ambos semejantes al primero (directa o inversamente), por medio de un solo corte rectilíneo.
  2. Precisar razonadamente cuáles son los cuadriláteros y triángulos que admiten una descomposición de este tipo.
pistasolución 1info
Pista. Fíjate en el número de lados de los polígonos resultantes para saber por dónde se puede o debe cortar.
Solución. Cualquier corte de un polígono convexo es a lo largo de un segmento que une dos vértices, un vértice con un punto interior de un lado o bien dos puntos interiores de dos lados. Tras hacer el corte, quedan dos polígonos que tienen entre ambos a lo sumo $n+3$ lados (en el caso de cortar por puntos interiores de dos lados) y uno de ellos tendrá a lo sumo $\frac{n+3}{2}$ lados, pero $\frac{n+3}{2}\leq 4$ para $n\geq 5$, luego una de las piezas no podrá ser semejante al original simplemente porque tiene menos lados.

En el caso de un triángulo $ABC$, la única forma de que tras cortar queden dos triángulos es cortar por un segmento que una un vértice, pongamos $A$, con un punto interior $P$ del lado opuesto $BC$. Si $AP$ no es ortogonal a $BC$, entonces uno de los ángulos $\angle APB$ o $\angle APC$ será obtuso y sumará con el otro $180^\circ$. Por tanto, cada uno de los dos triángulos deberá tener dos ángulos que sumen $180^\circ$ y esto es imposible. Deducimos entonces que $AP$ es perpendicular a $BC$ y esto nos lleva a cualquier triángulo rectángulo cortado por la altura sobre su hipotenusa (¿sabrías justificarlo rigurosamente?).

En el caso de un cuadrilátero $ABCD$, para obtener de nuevo cuadriláteros debemos cortar por el segmento que une dos puntos interiores de lados opuestos, pongamos $P$ en $AB$ y $Q$ en $CD$. Los dos cuadriláteros pequeños comparten dos ángulos con el grande y los otros dos ángulos de los pequeños deben tener la misma amplitud que los restantes del grande, no obstante, el corte forma dos ángulos que suman $180^\circ$. Por tanto, el cuadrilátero grande debe tener dos pares de ángulos iguales suplementarios, que nos lleva a que debe ser o bien un trapecio isósceles o bien un paralelogramo. El primer caso se descarta fácilmente ya que entonces uno de los cuadriláteros pequeños debería ser un paralelogramo y el grande no lo es. En el segundo caso, $PQ$ debe ser paralela a $AD$ y $BC$, luego la semejanza nos lleva a que deba ser $\frac{AB}{BC}=\frac{PQ}{AP}=\frac{PQ}{BP}$. La última proporción nos lleva directamente a que $AP=PB$, luego $P$ y $Q$ son los puntos medios de $AB$ y $CD$, respectivamente. Como $PQ=BC$, la primera proporción nos dice que $BC^2=AB\cdot AP=\frac{1}{2}AP^2$. Obtenemos así todos los paralelogramos cuyos lados están en proporción $\sqrt{2}$ cortados por el segmento que une los puntos medios de sus lados mayores.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1484
  1. Dado un polinomio de coeficientes reales $P(x)$, ¿se puede afirmar que para todo valor real de $x$ es cierta alguna de las siguientes tres desigualdades: \[P(x)\leq P(x)^2,\qquad P(x)\lt 1+P(x)^2,\qquad P(x)\leq\tfrac{1}{2}+\tfrac{1}{2}P(x)^2?\]
  2. Encontrar un procedimiento general que permita, siempre que nos den dos polinomios $P(x)$ y $Q(x$), encontrar otro $M(x)$ tal que para todo valor de $x$, se cumplan simultáneamente las desigualdades siguientes: \[-M(x)\lt P(x)\lt M(x)\quad\text{y}\quad -M(x)\lt Q(x)\lt M(x).\]
pistasolución 1info
Pista. Utiliza la desigualdad triangular para resolver el apartado (b).
Solución. La desigualdad $P(x)\leq P(x)^2$ no es cierta para todos los polinomios (un contraejemplo es $P(x)=x$ ya que se tiene que $x\leq x^2$ únicamente si $x\geq 1$ o $x\leq 0$). La segunda desigualdad sí que es cierta puesto que el polinomio $z^2-z+1=(z-\frac{1}{2})^2+\frac{3}{4}$ es positivo para todo $z\in\mathbb{R}$, en particular para $z=P(x)$. La tercera desigualdad también es cierta puesto que el polinomio $z^2-2z+1=(z-1)^2$ es mayor o igual que $0$, en particular para $z=P(x)$.

En cuanto al apartado (b), vamos a utilizar la desigualdad $|z|\leq \frac{1+z^2}{2}$, que se deduce de la misma forma que en la tercera desigualdad del apartado (a). Podemos escribir los dos polinomios como $P(x)=a_0+a_1x+\ldots+a_nx^n$ y $Q(x)=b_0+b_1x+\ldots+b_nx^n$ (si son de distinto grado, completamos con sumandos cero). La desigualdad triangular nos dice que \begin{align*} |P(x)|&=\left|\sum_{k=0}^na_kx^k\right|\leq\sum_{k=0}^n|a_k|\cdot|x|^k\leq\sum_{k=0}^n\frac{|a_k|}{2^k}(1+x^2)^k,\\ |Q(x)|&=\left|\sum_{k=0}^nb_kx^k\right|\leq\sum_{k=0}^n|b_k|\cdot|x|^k\leq\sum_{k=0}^n\frac{|b_k|}{2^k}(1+x^2)^k. \end{align*} Por tanto, si definimos el polinomio \[M(x)=\sum_{k=0}^n\frac{\max\{|a_k|,|b_k|\}}{2^k}(1+x^2)^k,\] se cumple que $|P(x)|\leq M(x)$ y $|Q(x)|\leq M(x)$, que es lo que queríamos.

Nota. Hay muchas formas de hacer la estimación del valor absoluto del polinomio. Una forma mucho más eficiente consiste, en lugar de escribir $|x|^k\leq\frac{1}{2^k}(1+x^2)^k$, dejar las potencias pares $|x|^{2j}=x^{2j}$ y en las impares hacer $|x|^{2j+1}=x^{2j}|x|\leq\frac{1}{2}x^{2j}(1+x^2)$. Esto garantiza que el grado de $M$ es a lo sumo una unidad más que el grado máximo de $P$ y $Q$. Este es el grado óptimo ya que en general $M$ tiene que ser de grado par de forma que tienda a $+\infty$ tanto en $+\infty$ como en $-\infty$.

Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1485
Un polígono convexo $A_1A_2\ldots A_n$ de $n$ lados inscrito en una circunferencia tiene sus lados que satisfacen las desigualdades \[A_nA_1\gt A_1A_2\gt A_2A_3\gt\cdots A_{n-1}A_n.\] Demostrar que sus ángulos interiores satisfacen las desigualdades \[\widehat{A}_1\lt\widehat{A}_2\lt\widehat{A}_3\lt\cdots\lt \widehat{A}_{n-1}\quad\text{y}\quad \widehat{A}_{n-1}\gt\widehat{A}_n\gt \widehat{A}_1.\]
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
Problema 1486
La casa SEAT recomienda a los usuarios, para la correcta conservación de las ruedas, substituciones periódicas de las mismas en la forma $R\to 3\to 2\to 1 \to 4\to R$, siendo $1,2,3,4$ las ruedas delantera izquierda, delantera derecha, trasera izquierda y trasera derecha, respectivamente, y $R$ la rueda de repuesto. Llamamos $G$ a este cambio de ruedas y llamamos $G^n$ al cambio de ruedas que resulta de aplicar $n$ veces consecutivas $G$.
  1. Demostrar que el conjunto $\{G^n:n\in\mathbb{N}\}$ tiene estructura de grupo, con el producto que consiste en aplicar sucesivamente los cambios de ruedas a multiplicar.
  2. Cada pinchazo de una de las ruedas equivale a sustituir la rueda pinchada por la de repuesto y, una vez reparada, esta pasa a ocupar el lugar de la de repuesto. Obtener $G$ como producto de transformaciones de tipo pinchazo. ¿Forman las transformaciones de tipo pinchazo un grupo?
Sin pistas
Sin soluciones
info
Si crees que el enunciado contiene un error o imprecisión o bien crees que la información sobre la procedencia del problema es incorrecta, puedes notificarlo usando los siguientes botones:
Informar de error en enunciado Informar de procedencia del problema
José Miguel Manzano © 2010-2025. Esta página ha sido creada mediante software libre