OME Local |
OME Andaluza |
OME Nacional |
OIM |
IMO |
EGMO |
USAMO |
ASU |
OMCC |
Retos UJA |
Para la segunda parte, podemos hacer un razonamiento similar para $x=\frac{5}{3}-\frac{1}{3}\sqrt{5}$ e $y=3$, lo que nos da la igualdad \[\left(\sqrt{3}+\sqrt{5-\sqrt{22}}\right)^2=8-\sqrt{22}+2\sqrt{15-3\sqrt{22}}\] y podemos transformar \begin{align*} M&=\sqrt{3}+\sqrt{5+\sqrt{22}}+\sqrt{5-\sqrt{22}}\\ &=\sqrt{3}+\sqrt{(5+\sqrt{22})+(5-\sqrt{22})+2\sqrt{5+\sqrt{22}}\sqrt{5-\sqrt{22}}}\\ &=\sqrt{3}+\sqrt{10+2\sqrt{25-22}}=\sqrt{3}+\sqrt{10+2\sqrt{3}}. \end{align*}
La discusión anterior nos dice que el sector $\Omega_r$ no contiene a ninguno de los puntos $P_1,\ldots,P_{r-1},P_{r+1},\ldots,P_k$, pues $\Omega_r$ está contenido en la unión del círculo bordeado por $\Gamma_r$ y el semiplano determinado por la mediatriz $A_rB_r$ que contiene a $P_r$. Además, como las distancias entre cada par de puntos son distintas, ninguno de los puntos $P_1,\ldots,P_{r-1},P_{r+1},\ldots,P_k$ puede estar en las rectas $OA_r$ ó $OB_r$. Un razonamiento similar nos da la existencia de un sector $\Omega_1$ de ángulo $120º$ centrado en $P_1$ (contenido en la unión del interior de $\Gamma$ y el semiplano determinado por la mediatriz de $OP_1$ que contiene a $P_1$). En consecuencia, si suponemos que las semirrectas de vértice $O$ que pasan por $P_1,P_2,\ldots,P_k$ están ordenadas en sentido antihorario, el ángulo entre dos semirrectas consecutivas es estrictamente mayor que $60^\circ$. Como la suma de los $k$ ángulos que forman estas semirrectas es $360^\circ$, deducimos que $k\leq 5$.
Nota. Se puede probar fácilmente que pudiera haber puntos unidos exactamente a otros $5$ puntos, luego el resultado no se puede mejorar. Una forma de ver esto es considerar el centro y los vértices de un pentágono regular y modificar ligeramente sus posiciones para que todas las distancias sean distintas.